80年代土耳其译制电影,80年代外国电影|80年代外国电影有哪些_80年代外国经典电影在线播放地址是多少?

[1]陳曉梅,盧晨昕.右美托咪啶預(yù)處理對改善谷氨酸誘導(dǎo)神經(jīng)元活化與小鼠焦慮樣行為的研究[J].福建醫(yī)藥雜志,2022,44(01):114-117.
 CHEN Xiaomei,LU Chenxin.Effect of dexmedetomidine premedication on neuronal activation and anxiety-like behavior induced by glutamine in mice[J].FUJIAN MEDICAL JOURNAL,2022,44(01):114-117.
點(diǎn)擊復(fù)制

右美托咪啶預(yù)處理對改善谷氨酸誘導(dǎo)神經(jīng)元活化與小鼠焦慮樣行為的研究()
分享到:

《福建醫(yī)藥雜志》[ISSN:1002-2600/CN:35-1071/R]

卷:
44
期數(shù):
2022年01期
頁碼:
114-117
欄目:
基礎(chǔ)研究
出版日期:
2022-02-15

文章信息/Info

Title:
Effect of dexmedetomidine premedication on neuronal activation and anxiety-like behavior induced by glutamine in mice
文章編號:
1002-2600(2022)01-0114-04
作者:
陳曉梅盧晨昕
廈門大學(xué)附屬福州第二醫(yī)院麻醉科(福州350007)
Author(s):
CHEN Xiaomei LU Chenxin
Department of Anesthesiology, the Affiliated Fuzhou Municipal Second Hospital of Xiamen University, Fuzhou, Fujian 350007, China
關(guān)鍵詞:
焦慮障礙谷氨酸右美托咪啶
Keywords:
anxiety-like behavior glutamine dexmedetomidine
分類號:
R614
文獻(xiàn)標(biāo)志碼:
B
摘要:
目的 評價右美托咪啶預(yù)先處理改善谷氨酸誘導(dǎo)HT22神經(jīng)元活化與小鼠焦慮樣行為。方法 體外培養(yǎng)HT22神經(jīng)元,予0、0.5、1、5、10、20mM L-谷氨酸孵育3、6、12、24h,采用Calcein AM染色檢測細(xì)胞活率;予0.05和0.1μg/mL右美托咪啶(Dex)、AMPA受體拮抗劑(DNXQ)、抗組胺劑哌羅克生(Piperoxan)預(yù)先處理HT22細(xì)胞后,采用1mM和5mM L-谷氨酸孵育12h,檢測乳酸脫氫酶(LDH)釋放和活性氧(ROS) 產(chǎn)生。基底外側(cè)杏仁核內(nèi)立體定位注射L-谷氨酸誘導(dǎo)小鼠抑郁樣行為,予1μL (50μg/mL)、1μL (100μg/mL) Dex、DNXQ、Piperoxan預(yù)先處理,采用曠場和高架十字迷宮實驗檢測小鼠焦慮樣行為。結(jié)果 L-谷氨酸處理HT22細(xì)胞呈濃度和時間依賴性誘導(dǎo)細(xì)胞死亡;與CONT 組相比,Glu組細(xì)胞內(nèi)游離Ca2+含量、LDH釋放率和ROS+HT22比例顯著增高(P<0.05),且可被DNQX和Dex逆轉(zhuǎn)(P<0.05);與Glu+Dex組相比,Piperoxan預(yù)先處理可逆轉(zhuǎn)Dex對HT22的保護(hù)作用(P<0.05)。與CONT組相比,Glu組曠場中央?yún)^(qū)域活動時間百分比、高架十字迷宮開臂停留時間百分比和開臂進(jìn)人次數(shù)百分比顯著降低(P<0.05),且可被DNQX和Dex逆轉(zhuǎn)(P<0.05);與Glu+Dex組相比,Piperoxan預(yù)先處理可逆轉(zhuǎn)Dex的抗焦慮作用(P<0.05)。 結(jié)論 Dex通過激活α2-腎上腺素受體,抑制谷氨酸誘導(dǎo)的胞內(nèi)鈣離子濃度升高、神經(jīng)元過度活化和氧化應(yīng)激,并有效改善小鼠焦慮樣行為的產(chǎn)生。
Abstract:
Objective To evaluate the effect of dexmedetomidine (Dex) premedication on HT22 activation and anxiety-like behavior induced by glutamine in mice. Methods HT22 cells were culture in vitro and incubated with0, 0.5, 1, 5,10, and 20 mM L-glutamine for 3,6,12,24 h. Calcein AM staining was applied to evaluate the cellular survival. Moreover, 0.05 and 0.1 μg/mL Dex, DNXQ, and Piperoxan were premedication for 60 min respectively, and 1 and 5 mM L-glutamine was applied to incubate for another 12 h, thereafter, and then LDH release and ROS production were detected. Mice were stereotactically injected with L-glutamine in the basolateral nucleus of amygdale to induce anxiety-like behavior. Premedication with 1 μL (50 μg/mL)、1 μL (100 μg/mL) Dex, DNXQ, and Piperoxan were performed, and open field and elevated plus maze test were applied to evaluate the protective effect on reversing anxiety like behavior. Results L glutamine induced HT22 cell death in a dose- and time-dependent manner. Compared with CONT group, intracellular calcium concentration, LDH release, and ROS production were significantly increased (P<0.05),but reversed by Dex and DNQX premedication (P<0.05). Compared with Glu+Dex group, Piperoxan premedication reversed the protective effect of Dex on HT22 (P<0.05). Compared with CONT group, mice in Glu group presented decreased the percentage of time spent in the central zone in the open field test, as well as the percentage of time spent in the open arms and entries in the open arms in the elevated plus maze test (P<0.05),but reversed by Dex and DNQX premedication (P<0.05). Compared with Glu+Dex group, Piperoxan premedication reversed the anti-anxiety effect of Dex in mice (P<0.05). Conclusion Dex can inhibit glutamine-induced increase of intracellular calcium concentration, neuronal over-activation, oxidative stress in HT22 cell, and can improve anxiety-like behavior in mice via activation of α2-adrenergic receptor.

參考文獻(xiàn)/References:

[1] Sharp B M. Basolateral amygdala,nicotinic cholinergic receptors, and nicotine: pharmacological effects and addiction in animal models and humans [J]. Eur J Neurosci,2019,50 (3):2247-2254.
[2] Chavez Pichardo M E, Reyes Bravo D Y, Mendoa-Trejo M S, et al. Brain alterations in GABA,glutamate and glutamine markers after chronic atrazine exposure in the male albino rat [J]. Arch Toxicol,2020,94 (9): 3217-3230.
[3] Legarreta M D, ShethC, Prescot A P, et al. An exploratory proton MRS examination of gamma-arminobutyric acid, glutamate, and glutamine and their relationship to afective aspects of chronie pain [J]. Neurosci Res,2021 (163): 10-17.
[4] Goveia C S, Miranda D B, OliveiraL V B, et al. Dexmedetomidine reduces postoperative cognitive and behavioral dysfunction adults submitted to general anesthesia for non-cardiac surgery: meta- analysis of randomized elinical trials [J]. Braz J Anesthesiol,2021,71 (4): 413-420.
[5] Lankadeva Y R, Shehabi Y, Deane A M, et al. Emerging benefits and drawbacks of a2 -adrenoceptor agonists in the management of sepsis and critical ilness [J]. Br J Pharmacol,2021,178 (6):1407-1425.
[6] Cai Y, FordC P. Dopamine cells diferentially regulate striatal cholinergic transmission across regions through corelease of dopamine and glutamate [J]. Cell Rep,2018,25 (11): 3148-3157.
[7] Lee S H, Govindaiah G, Cox C L. Selctive excitatory actions of DNQX and CNQX in rat thalamic neurons [J]. J Neuro-physiol,2010,103 (4): 1728-1734.
[8] Viemari J C, Bevengut M, Coulon P, et al. Nasal trigeminal inputs release the A5 inhibition received by the respiratory rthythm generator of the mouse neonate [J]. J Neurophysiol,2004,91(2): 746-758.
[9] Horvdth H R, Fazekas C L, Balazsfi D, et al. Contribution of vesicular glutamate transporters to stress response and related psychopathologies: studies in vGluT3 knockout mice [J]. Cell Mol Neurobiol,2018,38 (1): 37-52.
[10] Dygalo N N, Lanshakov D A, KomyshevaNP, et al. Chemogenetic activation of glutamatergic neurons in the juvenile rat cortex reduces anxiety [J]. Dokl biochem biophys,2020,490(1): 16-18.
[11] Amnold P D, Rosenberg D R, Mundo E, et al. Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive compulsive disorder: a preliminary study [J]. Psycho-pharmacology (Berl),2004,174 (4): 530-538.
[12] Palucha A, Pilec A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs [J]. Pharmacol T-her,2007, 115 (1): 116-147.

備注/Memo

備注/Memo:
基金項目: 2016年福建省醫(yī)學(xué)創(chuàng)新課題B類(2016CXB-5)
更新日期/Last Update: 2022-02-15